October Math Gems

PROBLEM OF THE WEEK 29

§1 Problems
Problem 1.1.
Va2 +vV1i—z+Vi+tz=3
Solution. X ) X
(I—2)Q+z))s+(1—-z)i+(14z)i =3
Let,
1 1
a=(1—-x)1, b= (1+xz)%
ab+a+b+1=3+1
(1+b)(14+a)=4 = a=1 and b=1
Now, we can say that 1+ x=1—z. So, z = 0. ]

Problem 1.2. Find all points (x,y) where the functions f(z), g(z), h(z) have the same
value:

8
flx) = 9z=5 3, g(x) =2z -5, h(z) = - +10
Solution.
f(z) = g(x) = h(z)
25 43— 25— " 410
x
For,
8
20 -5=—-+10 (multiply by z)
x
222 — 57 =8+ 102 = 222 — 152 — 8 =0
—1
z=2_8 and T = -
For,

275 41 3—-97-5

will give us an integer solution z = 8. we can verify solution x = 8 by plugging the value
8 in the place of x. So, we will see that

f(x) = g(x) = h(z) =11 As (¢ =38)

So, the points that f(x) = g(x) = h(x) have the same value is (8, 11). O
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Problem 1.3. Solve for x
(122 — 1)(6z — 1)(4z —1)(3z —1) =5
Solution. Let x = 4%,

Y Y y y
12x = —1)(6x = —1)(dx = —1)3x = —1)=5

Y Y Y
-nE-n&-1n&-1=>5

Multiply this equation by 2 x 3 x 4, So we get

(y—1)(y—2)(y —3)(y —4) =120

Now, we can solve for the four roots by knowing the properties of the 4" degree equation

5++v/—39
2
Do not forget that we assume before that z = 5. So,
m_5iv—39 x—l x—_—l
N 24 2 12
O
Problem 1.4. If a, b, ¢ are integers
ab _1 cb _1 ac _1
a+b 3 c+b 4 at+c 5
Find the value of
24abc
ab + be + ca
Solution. b .
a a
ab b+a
b+c 1 1
be c+b
ca 1 1
=5 = —+-—-=5
c+a
Sum these three equations
1 1 1 1 1 1
24+-+-)=12 = (-+-+-)=6
(a+b+c) (a+b+c)
abe 1
bc+ac+ab 6
24abe _24_4
bc+ac+ab 6
O

Problem 1.5. The general solution of

sinz — 3sin®z + sin® x = cosx — 3 cos® z + cos®
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Solution.
(sinz + sin3z) — 3sin 2z = (cosx + cos 3x) — 3 cos 2z

2sin2xcosx — 3sin2x = 2cos2x X cosx — 3 cos 2x

sin 2x(2cosx — 3) = cos2z(2cosx — 3)

3
sin 2x = cos 2% cosa:;é§
nw o sin 2z
tan 2z = 1 S — tan2
an 2x = =z 2+8 (Scos2a: an 2x)

Problem 1.6. Solve the equation

[\/5 4+ V24]° — [\/5 — V24]" = 40v/6

(5+v24)(5 — v24) = 1

multiply the given equation with (/5 + v/24)%, we get

Solution.

(V54 V24)" x [\/5 + V24)* — (\/5 + V24)* x [\/5 — V24" = 40V/6 x (\/5 + V24)"
(\/5+ vV24)2 — 1 = 40vV6 x (\/5 + v24)"

(V5 +V24)T =t

2 40V6xt—1=0 = t=20V6=+49

Suppose that

As,
t=20vV6—49 <0

so it is rejected.
t=20V6+49 = (5+V24)2 = (\/5+ V24)* = (5+V24)2
So,

T
B T

Problem 1.7. Solve )
213 (log(2))*+(log (2))- 3] — /2

Solution.
log, zl110s@)* +(og @) —3] — 1o (2)2

12 (logy ()2 + (1o () — 7] x logy =

Let,
logoz =y
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So, we get
3 5 1
GO+ @) = Ixy=5 = 3+ 4"~ 5y —2=0
3y +4y” = by —2=(y - By +1)(y +2) =0
-1
) Y Y 3
Now,
-1
logox =1 loggx = —2 logy z = 3

So, we will get three values of ,

Problem 1.8. If

fln+3)= m fay =11

Find the value of f(2003) =
Solution. Suppose that n =11son+3 =14

o1 = o= 11

Now, we can find f(17) by using the value of f(14)

B _f(14)—1_§._1_—1
f(14+3)_f(17)_f(14)+1_g+1_ﬁ

fan -1 {7 -1_ -6

fan+1 - Ly 5
f20) -1 F-1
f0)+1 L1

you must have noticed the pattern, we return to f(x) = 11 after 12 rounds, we can

suppose that

FOT+3) = f(20) =

11

f(20+3) = f(20+3) =

2003 = 11 + 12k

and if we get the value of k as an integer number so f(2003) = 11. Now, solve for k,

2003 =11+ 12k = k =166

So, we can say that f(2003) = 11 O

Problem 1.9. Solve for x

2x n 13z —6
202 —5x+3 2224+ x+3
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Solution. First, divide the numerator and denominator by x, As x = 0 is not one of the
roots of this equation. So,

2 LB
20—-5+3 241432
Now, Let
3
a=2r+ —
x
2 B 135 +2a+1)=6(a—5)a+1)
a—5 CL+1_ a a = a a

13a — 65 +2a +2 = 6(a® —4a —5) = 6a®> —39a+33 =0
{1
a=1<2

3
(41‘—3)(3@—2):O:>x:1, x=2

Now, we can solve for a

—

—

For a = 1, there is no real solutions!

11

For a = 5,

So, the zeros of this equation is {2,2} O

Problem 1.10. If o, 8,7 do not differ by a multiple of 7w and if

cos(a+0)  cos(B+6)  cos(y+0)

sin(B++) sin(y+a) sin(a+ ) =K

Find the value of K.
Solution. Observe that a, 5, all satisfy the below equation in x

w:k S=a+pB+7y
cosx X cosf —sinx X sinf = ksin Scosz — ksinz cos S
sinx(kcos S —sinf) = cosz(ksinS — cosf) — (1)
Assume that (kcos S —sinf) # 0

(ksinS — cos6)
tanz = =

(kcosS —sinf)

So,
tana =tan 8 = tany =9

a=nt+f=mm+7y (a contradiction)

So,
(kcosS —sinf) =0

and from (1)
(ksinS —cosf) =0

= kcosS =sinf and ksinS = cos 6
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Squaring and adding, we get
k?(cos? S + sin? S) = (sin? @ + cos? 0)

=1= k==+1

O
Problem 1.11. If 22 + y? = 4, Find the largest value of 3z + 4y.
Solution.
o (az +by)? + (bx — ay)? = (a® + %) (2% + )
o3z +4y) 2 + (4 — 3y)? = (9 +16) (2 + %) = 25 x 4 = 100
o (3z + 4y)? = 100 — (4 — 3y)? and (42 —3y)2 >0
S B3r 44y <10 = —10< 3244y <10
so the greatest value of 3z + 4y is 10. O

Problem 1.12. If az + (b — 3) = (5a — 1)z + 3b has more than one solution, find the
value of 100a + 4b.

Solution.
za—5a+1)=3b—-b+3 = (1 —4a)x=2b+3

We can ask ourselves When the equation has more than one solution?
Oxz=0 (x is infinite)

Now, we can use this idea in this proof

1
(1-4)=0 = a= B+3=0 = b=

1 —
100a+4b:100xZ+4><73:25—6:19

Problem 1.13. Find the least value of this algebraic expression

Va2 +14+/(y—2)?2+4+/(z—y)2+14+/(10—2)2+9

Solution. We can say the least value of this algebraic expression is the hypotenuse of the
right-angled-triangle

(7)2 4 (10)2 = V149

Problem 1.14. If a + b + ¢ = 0 then the value of

a’ +b" +c’
abc(a* 4+ b* + ¢*)




Problem of the week 29 () October Math Gems

Ve 14— 22 +a+ V()2 + 141022+ 9

2
; :
X ¥-X Z-¥Y  10-z
)
3
Rz
C\‘r&
X FA—
& q l0-zZ 7
e
<& 7oy
2
i g Y-X
- v

10

Solution.
a+b+c=0 = (a+b+c)*=0

(a+b+c)* =a*+b* +c* +2(ab+ ac+ be) =0
(a® 4+ b* 4 *)? = (=2(ab + ac + bc))? — *

(a® + 0%+ cA)? = a* + b + ¢t + 2(a®? + a*c® +b2?) — (1)
(—2(ab+actbe))? = 4[(a*b*+a*P+b* ) +2(ab’c+-a’be+bca)] = 4](a*b?+a* b)) — (2)
substitute (1) and (2) in (*), we get

at + bt + ¢t = 2(a?? + a? + b)) — (3)
cad b4 —3abe = (a+b+c)(a® + b2+ —ab—bc—ac) =0
sa® 4+ 0%+ ¢ = 3abe — (4)
Now, multiply (3) and (4)
(a* b+ M) (@ +02+¢3) = aT+0°+ " —abe(a®b? + b2 +a%c?) = 6abe(a’b? + b2 +a?c?)
coa” + b+ " = Tabe(a®V? + b2 + a®?) — (5)
substitute with (3) and (5) in the needed expression

(" +b"+c")  Tabe(a*V? + b?c? 4+ a*c?) 7

abe(a* + b4 + ) Tabe(a?b? + b2¢2 + a2c?) 2
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4o

Problem 1.15. The side lengths of the three squares are consecutive integers. What’s
the total area?

Solution. Note the yellow square is a two-unit wider than the blue one.
16 + 22 = (4V/10)% = 160

which means the squares have lengths 5, 6, and 7. ]

Problem 1.16. Four equilateral triangles, Find the area of the red one.

Solution.

ADEC = (1 -3 x é x g)AFBG = %AFBG

AFBG =20+5x5=45

ACDE:%X45:15

Problem 1.17. If 67% = 2% = 3Y then the value of
1 1 1
Ty z

is ?
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Solution.

So,

We can see that ) )

1 1 1,1
2xXx3=a=r Xay =a*'v =qa =

Now, we can say that

1 -1
=
x Yy z
So,
1 1 1 -1 1
— — _ = — — = O
Yy =z z z
O
Problem 1.18. Find the solution set of the equation
3cos lx =sin (V1 — 22 x (42% — 1))
Solution.
y =sin (/1 — 22 x (42 — 1))
r=cosd = O =cos 'z
y = sin"!(sin@(4cos® § — 1)) = sin~*(sin(36)) = 30 = 3cos™ ! (x) (% <6< %)
also,
0<9<t — 15453
6 2
So the solution set /3
3
el—,l1
x [ 2 ? ]
O
Problem 1.19. Solve
x2021
x” = 2021

Ne}
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Solution. We will find if we put z2°?! = 2021, So

22021 — 9091 — g = 2021702

O
Problem 1.20. if p, ¢ are odd positive numbers since
(1+3+5++p)+(1+3+5+--+q) =(1+3+5+---+19)
Find the value of p + g¢.
Solution. the rule of the sum of the odd numbers
14+3+5+--+2m—1)=m?
p+1
+1
14345+ T4t p= (P = (1)
+1
AIABHSHTH = (=) > (2)
1941
1434547+ +19=( + )2 =100 — (3)
g+l P+l
— —)* =100
A+ ()
there is one possible solution that is
6% 4 8% = 10?
p+q=11+15=26
O

10
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