
October Math Gems

Problem of the week 29

§1 Problems

Problem 1.1.
4
√
1− x2 + 4

√
1− x+ 4

√
1 + x = 3

Solution.
((1− x)(1 + x))

1
4 + (1− x)

1
4 + (1 + x)

1
4 = 3

Let,

a = (1− x)
1
4 , b = (1 + x)

1
4

ab+ a+ b+ 1 = 3 + 1

(1 + b)(1 + a) = 4 =⇒ a = 1 and b = 1

Now, we can say that 1 + x = 1− x. So, x = 0.

Problem 1.2. Find all points (x, y) where the functions f(x), g(x), h(x) have the same
value:

f(x) = 2x−5 + 3, g(x) = 2x− 5, h(x) =
8

x
+ 10

Solution.
f(x) = g(x) = h(x)

2x−5 + 3 = 2x− 5 =
8

x
+ 10

For,

2x− 5 =
8

x
+ 10 (multiply by x)

2x2 − 5x = 8 + 10x =⇒ 2x2 − 15x− 8 = 0

x = 8 and x =
−1

2

For,
2x−5 + 3 = 2x− 5

will give us an integer solution x = 8. we can verify solution x = 8 by plugging the value
8 in the place of x. So, we will see that

f(x) = g(x) = h(x) = 11 As (x = 8)

So, the points that f(x) = g(x) = h(x) have the same value is (8, 11).
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Problem 1.3. Solve for x

(12x− 1)(6x− 1)(4x− 1)(3x− 1) = 5

Solution. Let x = y
12 ,

(12× y

12
− 1)(6× y

12
− 1)(4× y

12
− 1)(3× y

12
− 1) = 5

(y − 1)(
y

2
− 1)(

y

3
− 1)(

y

4
− 1) = 5

Multiply this equation by 2× 3× 4, So we get

(y − 1)(y − 2)(y − 3)(y − 4) = 120

Now, we can solve for the four roots by knowing the properties of the 4th degree equation

y =
5±

√
−39

2
y = 6 y = −1

Do not forget that we assume before that x = y
12 . So,

x =
5±

√
−39

24
x =

1

2
x =

−1

12

Problem 1.4. If a, b, c are integers

ab

a+ b
=

1

3
,

cb

c+ b
=

1

4
,

ac

a+ c
=

1

5

Find the value of
24abc

ab+ bc+ ca

Solution.
a+ b

ab
= 3 =⇒ a

b
+

1

a
= 3

b+ c

bc
= 4 =⇒ 1

c
+

1

b
= 4

ca

c+ a
= 5 =⇒ 1

c
+

1

a
= 5

Sum these three equations

2(
1

a
+

1

b
+

1

c
) = 12 =⇒ (

1

a
+

1

b
+

1

c
) = 6

abc

bc+ ac+ ab
=

1

6

24abc

bc+ ac+ ab
=

24

6
= 4

Problem 1.5. The general solution of

sinx− 3 sin2 x+ sin3 x = cosx− 3 cos2 x+ cos3 x
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Solution.
(sinx+ sin 3x)− 3 sin 2x = (cosx+ cos 3x)− 3 cos 2x

2 sin 2x cosx− 3 sin 2x = 2 cos 2x× cosx− 3 cos 2x

sin 2x(2 cosx− 3) = cos 2x(2 cosx− 3)

sin 2x = cos 2x cosx ̸= 3

2

tan 2x = 1 =⇒ x =
nπ

2
+

π

8
(As

sin 2x

cos 2x
= tan 2x)

Problem 1.6. Solve the equation

[

√
5 +

√
24]x − [

√
5−

√
24]x = 40

√
6

Solution.
(5 +

√
24)(5−

√
24) = 1

multiply the given equation with (
√
5 +

√
24)x, we get

(

√
5 +

√
24)x × [

√
5 +

√
24]x − (

√
5 +

√
24)x × [

√
5−

√
24]x = 40

√
6× (

√
5 +

√
24)x

(

√
5 +

√
24)2x − 1 = 40

√
6× (

√
5 +

√
24)x

Suppose that

(

√
5 +

√
24)x = t

t2 − 40
√
6× t− 1 = 0 =⇒ t = 20

√
6± 49

As,
t = 20

√
6− 49 < 0

so it is rejected.

t = 20
√
6 + 49 = (5 +

√
24)2 = (

√
5 +

√
24)x = (5 +

√
24)

x
2

So,
x

2
= 2 =⇒ x = 4

Problem 1.7. Solve
x[

3
4
(log(x))2+(log (x))− 5

4
] =

√
2

Solution.
log2 x

[ 3
4
(log(x))2+(log (x))− 5

4
] = log2 (2)

1
2

[
3

4
(log2(x))

2 + (log2 (x))−
5

4
]× log2 x =

1

2

Let,
log2 x = y
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So, we get

[
3

4
(y)2 + (y)− 5

4
]× y =

1

2
=⇒ 3y3 + 4y2 − 5y − 2 = 0

3y3 + 4y2 − 5y − 2 = (y − 1)(3y + 1)(y + 2) = 0

y = 1 y = −2 y =
−1

3

Now,

log2 x = 1 log2 x = −2 log2 x =
−1

3

So, we will get three values of x,

x = 21 = 2 x = 2−2 =
1

4
x = 2

−1
3

Problem 1.8. If

f(n+ 3) =
f(n)− 1

f(n) + 1
, f(11) = 11

Find the value of f(2003) =

Solution. Suppose that n = 11 so n+ 3 = 14

f(11 + 3) = f(14) =
f(11)− 1

f(11) + 1
=

11− 1

11 + 1
=

5

6

Now, we can find f(17) by using the value of f(14)

f(14 + 3) = f(17) =
f(14)− 1

f(14) + 1
=

5
6 − 1
5
6 + 1

=
−1

11

f(17 + 3) = f(20) =
f(17)− 1

f(17) + 1
=

−1
11 − 1
−1
11 + 1

=
−6

5

f(20 + 3) = f(20 + 3) =
f(20)− 1

f(20) + 1
=

−6
5 − 1
−6
5 + 1

= 11

you must have noticed the pattern, we return to f(x) = 11 after 12 rounds, we can
suppose that

2003 = 11 + 12k

and if we get the value of k as an integer number so f(2003) = 11. Now, solve for k,

2003 = 11 + 12k =⇒ k = 166

So, we can say that f(2003) = 11

Problem 1.9. Solve for x

2x

2x2 − 5x+ 3
+

13x

2x2 + x+ 3
= 6
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Solution. First, divide the numerator and denominator by x, As x = 0 is not one of the
roots of this equation. So,

2

2x− 5 + 3
x

+
13

2x+ 1 + 3
x

= 6

Now, Let

a = 2x+
3

x

2

a− 5
+

13

a+ 1
= 6 =⇒ 13(a− 5) + 2(a+ 1) = 6(a− 5)(a+ 1)

13a− 65 + 2a+ 2 = 6(a2 − 4a− 5) =⇒ 6a2 − 39a+ 33 = 0

Now, we can solve for a

a =

{
11
2

1

For a = 1, there is no real solutions!

For a = 11
2 ,

(4x− 3)(x− 2) = 0 =⇒ x =
3

4
, x = 2

So, the zeros of this equation is {3
4 , 2}

Problem 1.10. If α, β, γ do not differ by a multiple of π and if

cos(α+ θ)

sin(β + γ)
=

cos(β + θ)

sin(γ + α)
=

cos(γ + θ)

sin(α+ β)
= K

Find the value of K.

Solution. Observe that α, β, γ all satisfy the below equation in x

cos(x+ θ)

sin(S − x)
= k S = α+ β + γ

cosx× cos θ − sinx× sin θ = k sinS cosx− k sinx cosS

sinx(k cosS − sin θ) = cosx(k sinS − cos θ) → (1)

Assume that (k cosS − sin θ) ̸= 0

tanx =
(k sinS − cos θ)

(k cosS − sin θ)
= δ

So,
tanα = tanβ = tan γ = δ

α = nπ + β = mπ + γ (a contradiction)

So,
(k cosS − sin θ) = 0

and from (1)
(k sinS − cos θ) = 0

=⇒ k cosS = sin θ and k sinS = cos θ
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Squaring and adding, we get

k2(cos2 S + sin2 S) = (sin2 θ + cos2 θ)

k2 = 1 =⇒ k = ±1

Problem 1.11. If x2 + y2 = 4, Find the largest value of 3x+ 4y.

Solution.
∵ (ax+ by)2 + (bx− ay)2 = (a2 + b2)(x2 + y2)

∴ (3x+ 4y)2 + (4x− 3y)2 = (9 + 16)(x2 + y2) = 25× 4 = 100

∵ (3x+ 4y)2 = 100− (4x− 3y)2 and (4x− 3y)2 ≥ 0

∴ |3x+ 4y| ≤ 10 =⇒ −10 ≤ 3x+ 4y ≤ 10

so the greatest value of 3x+ 4y is 10.

Problem 1.12. If ax+ (b− 3) = (5a− 1)x+ 3b has more than one solution, find the
value of 100a+ 4b.

Solution.
x(a− 5a+ 1) = 3b− b+ 3 =⇒ (1− 4a)x = 2b+ 3

We can ask ourselves When the equation has more than one solution?

0× x = 0 (x is infinite)

Now, we can use this idea in this proof

(1− 4b) = 0 =⇒ a =
1

4
2b+ 3 = 0 =⇒ b =

−3

2

100a+ 4b = 100× 1

4
+ 4× −3

2
= 25− 6 = 19

Problem 1.13. Find the least value of this algebraic expression√
x2 + 1 +

√
(y − x)2 + 4 +

√
(z − y)2 + 1 +

√
(10− z)2 + 9

Solution. We can say the least value of this algebraic expression is the hypotenuse of the
right-angled-triangle √

(7)2 + (10)2 =
√
149

Problem 1.14. If a+ b+ c = 0 then the value of

a7 + b7 + c7

abc(a4 + b4 + c4)
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Solution.
a+ b+ c = 0 =⇒ (a+ b+ c)2 = 0

(a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ ac+ bc) = 0

(a2 + b2 + c2)2 = (−2(ab+ ac+ bc))2 → ∗

(a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + a2c2 + b2c2) → (1)

(−2(ab+ac+bc))2 = 4[(a2b2+a2c2+b2c2)+2(ab2c+a2bc+bc2a)] = 4[(a2b2+a2c2+b2c2)] → (2)

substitute (1) and (2) in (*), we get

a4 + b4 + c4 = 2(a2b2 + a2c2 + b2c2) → (3)

∵ a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ac) = 0

∴ a3 + b3 + c3 = 3abc → (4)

Now, multiply (3) and (4)

(a4+b4+c4)(a3+b3+c3) = a7+bc+c7−abc(a2b2+b2c2+a2c2) = 6abc(a2b2+b2c2+a2c2)

∴ a7 + bc + c7 = 7abc(a2b2 + b2c2 + a2c2) → (5)

substitute with (3) and (5) in the needed expression

(a7 + b7 + c7)

abc(a4 + b4 + c4)
=

7abc(a2b2 + b2c2 + a2c2)

7abc(a2b2 + b2c2 + a2c2)
=

7

2
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Problem 1.15. The side lengths of the three squares are consecutive integers. What’s
the total area?

Solution. Note the yellow square is a two-unit wider than the blue one.

16 + x2 = (4
√
10)2 = 160

which means the squares have lengths 5, 6, and 7.

Problem 1.16. Four equilateral triangles, Find the area of the red one.

Solution.

△DEC = (1− 3× 1

3
× 2

3
)△FBG =

1

3
△FBG

△FBG = 20 + 5× 5 = 45

△CDE =
1

3
× 45 = 15

Problem 1.17. If 6−z = 2x = 3y then the value of

1

x
+

1

y
+

1

z

is ?
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Solution.
6−z = 2x = 3y = a

So,

2x = a =⇒ 2 = x
√
a =⇒ 2 = a

1
x

and so on with others so we get

2 = a
1
x 6 = a

−1
z 3 = a

1
y

We can see that
2× 3 = a

1
x × a

1
y = a

1
x
+ 1

y = a
−1
z

Now, we can say that
1

x
+

1

y
=

−1

z

So,
1

x
+

1

y
+

1

z
=

−1

z
+

1

z
= 0

Problem 1.18. Find the solution set of the equation

3 cos−1 x = sin−1(
√
1− x2 × (4x2 − 1))

Solution.
y = sin−1(

√
1− x2 × (4x2 − 1))

x = cos θ =⇒ θ = cos−1 x

y = sin−1(sin θ(4 cos2 θ − 1)) = sin−1(sin(3θ)) = 3θ = 3 cos−1(x) (
−π

6
≤ θ ≤ π

6
)

also,

0 ≤ θ ≤ π

6
=⇒ 1 ≥ x ≥

√
3

2

So the solution set

x ∈ [

√
3

2
, 1]

Problem 1.19. Solve

xx
x2021

= 2021
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Solution. We will find if we put x2021 = 2021, So

x2021 = 2021 =⇒ x = 2021
1

2021

Problem 1.20. if p, q are odd positive numbers since

(1 + 3 + 5 + · · ·+ p) + (1 + 3 + 5 + · · ·+ q) = (1 + 3 + 5 + · · ·+ 19)

Find the value of p+ q.

Solution. the rule of the sum of the odd numbers

1 + 3 + 5 + · · ·+ (2m− 1) = m2

2m− 1 = p =⇒ 2m = p+ 1 =⇒ m =
p+ 1

2

∴ 1 + 3 + 5 + 7 + · · ·+ p = (
p+ 1

2
)2 → (1)

∴ 1 + 3 + 5 + 7 + · · ·+ q = (
q + 1

2
)2 → (2)

∴ 1 + 3 + 5 + 7 + · · ·+ 19 = (
19 + 1

2
)2 = 100 → (3)

(
q + 1

2
)2 + (

p+ 1

2
)2 = 100

there is one possible solution that is

62 + 82 = 102

p+ q = 11 + 15 = 26
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